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LETTER TO THE EDITOR 

A sequence of approximated solutions to the S-K model 
for spin glasses 

G Parisi 
Istituto Nazionale de Fisica Nucleare, Laboratori Nazionali di Frascati, Casella Postale 13, 
0004 Frascati, Roma, Italy 

Received 4 January 1980 

Abstract. In the framework of the new version of the replica theory, we compute a 
sequence of approximated solutions to the Sherrington-Kirkpatrick model of spin glasses. 

It has recently been shown that, in the replica approach to spin glasses (Edwards and 
Anderson 19751, if the replica symmetry is broken (de Almeida and Thouless 1978, 
Pytte and Rudnik 1979), as happens in the spin glass phase at low magnetic field, the 
local order parameter is a function q ( x )  defined on the interval 0-1 (Parisi 1980b, c). If 
the replica symmetry is unbroken, the function q ( x )  is a constant. 

The $-K mode1 €or spin glasses (Sherrington and Kirkpatrick 1975) is supposed to 
be soluble in the mean field approximation (the range of the interaction is infinite) and it 
is a good testing ground for this approach. 

We derive here a convergent sequence of approximations to the free energy of the 
S-K model; excellent agreement is obtained with the computer simulations of Sher- 
rington and Kirkpatrick (1978). The zero-temperature entropy is consistent with zero, 
while the zero-temperature internal energy is estimated to be 

U(0)  = -0,7633 f lop4. 

The computer simulations give U(0)  = -0.76 * 0.01, 
As in the conventional approach, we use the replica trick to integrate over the 

random spin couplings (Sherrington and Kirkpatrick 1975); in the saddle-point 
approximation (which is supposed to become exact in the thermodynamic limit) one 
finds that the free energy density FR, as a function of the magnetic field h, is 

FR = TFT(QO), aFT/dQab I Q = @ =  0, P = UT,  

where Tr stands for the sum over all the 2" possible values of the Ising spin variables Sa, 
and Qa,b is an n x n  matrix, identically zero on the diagonal (Q,,, =O) .  In the limit 
n '0, Q becomes a Ox0 matrix, which is not a well defined object; the standard 
solution to this problem consists of writing the matrix Q as a function of some 
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parameters q1 for generic integer n : at fixed q1 the free energy is analytically continued 
in n up to the point n = 0 (Blandin 1978, Bray and Moore 1978, Palmer and Van 
Hemmer 1979). 

Equation (2) does not fix the matrix Q" uniquely; for positive integer n the 
saddle-point method gives the correct result only if the function FT(Q)  has a minimum 
at the point Q". This condition implies that the Hessian matrix 

H ( a , b ) , ( c , d )  = a ' F T / a Q a , b a Q c , d  (2) 

has positive eigenvalues: if we consider variations which leave the matrix Qa,b sym- 
metric and zero on the diagonal, the matrix H will act on a space of dimensions 
n ( n  - 1)/2,  whose axes are labelled by a pair of indices (a, b ) ,  with a # b. If n < 1, the 
dimensions of the space on which H acts (the number of independent components of Q) 
becomes negative. Now, it has been remarked that in this unusual situation, in order to 
apply the saddle-point method correctly, the eigenvalues of H must be non-negative 
(de Almeida and Tbouless 1978, Pytte and Rudnik 1979, Bray and Moore 1978); 
unfortunately the positivity of H (i.e. the positivity of its eigenvalues) does not inply 
that FT is a minimum as a function of the ql. For example, if we restrict ourselves to 
studying the problem in the subspace of matrices having the form Qa,b = q, the conditicn 
of positivity af the eigenvalues of H restricted in this subspace implies that FT must be a 
maximum and not a minimum as a function of q ;  this happens because 

(3) 

becomes negative definite for n < 1. 
In the general case we cannot say if FT should be maximised or minimised as a 

function of the parameters q r ;  however, if we restrict ourselves to studying the problem 
in a subspace in which Tr(Q2)/n is negative definite, we must maximise and not 
minimise FT as a function of ql. 

The condition that the matrix H does not have negative eigenvalues in a subspace 
does not imply that H has no negative eigenvalue. Indeed it has been found (de 
Almeida and Thouless 1978, Pytte and Rudnik 1979) that there are negative eigen- 
values of H, if we choose the replica symmetric solution (Q:,b = 4 ) .  It is necessary to 
look for other solutions of equation (2) where the matrix Q" has a non-trivial 
dependence on the indices. The space of 0 x 0 matrices is a very large space (infinite 
dimensional) and we do not know how to write the generic matrix of this space; at the 
present moment the only viable approach consists of doing a simple ansatz for the 
matrix Qo and studying the problem in a smaller space; at the end of the computation 
one should compute the eigenvalues of the Hessian in order to check if the eigenvalues 
of H are positive. 

It has been suggested that the following parametrisation should be considered 
(Parisi 1980a): 

( l l n )  Tr Q2 = ( n  - l )q2  

If: I (  z, # I (  :) and I( L, = I (  L), i = 0, K, 
m. mi+l mi+l 0 a . b  = 4i 

mi 
(4) 

where the mi are integer numbers such that mi+l/mi is an integer ( i  = 1, K )  with mo = 1 
and mK+1= n ; I ( x )  is an integer valued function: its value is the smallest integer greater 
than or equal to x .  The matrix Q depends on K + 1 real parameters (qi) and K integer 
parameters (mi) ;  if we call MK the space of matrices having the form dictated by 
equation (4), it is easy to see that MKtl 2MK.  It has been suggested that if n is not 
integer, there is no reason to restrict ourselves to the case where the mi are integers and 
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we can treat the variable mi as a real number: the free energy will be computed as the 
analytic continuation from the integer mi. 

Let us restrict ourselves to the space M &  where the mi satisfy the following 
condition: 

mi > initl. ( 5 )  

To work in M k  presents two advantages: ( l / n )  Tr Q2 is negative definite, 
X 1 2 lim - Tr Q2 = -xi  (mi - mi+l)qi,  

n-0 0 

and it is possible to associate with the matrix Q a function q(x) on the interval 0-1 
defined by 

q ( x ) = q i ,  mi+l S x S mi. (7) 

For finite K the function q ( x )  is piecewise constant and for K -j CO we can obtain a 
smooth function. Equation (6) implies that FT must be maximised as a function of the 
qi. If K = 0 ,  q(x) is a constant function; we recover the traditional approach with 
unbroken replica symmetry. 

It is easy to show that the internal energy and the susceptibility are given by 
1 

U = - P / 2  I’ (1 - q 2 ( x ) )  dx, x = P I, (1 - q ( x ) )  dx. (8) 
0 

The identification of the Edwards-Anderson order parameter qEA = ((cr)’) is not 
easy in this framework; this difficulty is also present in the approach of Blandin (1978) 
and Blandin et a1 (1979), which corresponds in our language to the case K = 1, integer 
ml. They have suggested that 

where QQ,b has been computed after we have added to the argument of the exponential 
in equation (1) a term proportional to &$b. This term is an infinitesimal breaking of 
the replica symmetry; it removes the ambiguity that would be present in equation (9) for 
E = 0. If we apply this suggestion to our case, we find 

 EA = max X q ( x ) .  (10) 

The derivation of equation (10) is far from being rigorous, and it should be justified 
by a more careful analysis; equations (8) and (10) together show that the breaking of the 
replica symmetry is connected with the failure of the relation x = p (1 - qEA) (Fisher 
1975). 

Analytic results can be obtained near the critical temperature (TC = 1) (Parisi 
1980a); the maximum of FT is located at K = 00, and for finite K the errors in the free 
energy and in the magnetic susceptibility decrease respectively like (2K + 1)-4 and 
(2K + 1)-2. The bulk of the corrections for going from K = 0 to K = CO are obtained 
also for K as small as 1. Numerical results for K = 1 (Parisi 1979,1980b) are indeed in 
good agreement with the computer simulation. In this Letter we report on the 
numerical results for K = 2 and we present a formalism which allows us to obtain the 
results also for higher values of K. 
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Using the Gaussian integral representation to disentangle the sum over different 
spins, FT(Q) can be written as a K-fold integral: in the case K = 2 we find 

FT(Q)  = -$'(l +lo q2(x) dx -2q(l))  
1 

+m +m 

- dzo G,,(zo) In[ dzl Gql-qo(zl - ZO)  I, -, 

dz2 Gqz-q1(z2 - 2 1 )  COshm2(Pz2+ p h ) )  ] , (11) 
X i I, +CO m z / m ,  l / m l  

G,(z) = (2,~q)-'/* exp(-z2/2q). 

Using the fact that Gq(z)  is the Green function of the heat equation, equation (11) 
can be formally written as 

F T ( Q ) = - ~ P ' ( ~ + S & ~ ( X )  dx-2q( l ) )  

(12) m 2 / m l  l / m  

C, = exp(tq d2/dz2).  

- cq, 1n{~q1-qo[Cqz-q1 exp(m2fdz + h))l I l / z = o ,  

f k h )  = ln[2 cosh(ph)], 

The numerical evaluation of equation (11) is rather simple; by maximising the free 
energy as a function of the parameters q i  and mi, one finds the results shown in table 1. 

Table 1. We show the zero temperature entropy, the internal energy and susceptibility for 
K = 0, 1, 2. 

0 -0.16 -0.798 0.80 
1 -0.01 -0.7652 0.95 
2 -0,004 -0.7636 0.98 

As expected, the convergence with increasing K is fairly fast. The absolute value of the 
negative entropy decreases with increasing K and it is quite likely that S(0 )  = 0 for 
K = 30. The problem of negative zero-temperature entropy, which plagues the con- 
ventional approach to spin glasses, seems to be absent here; this result strongly suggests 
that in the limit K + 30 one obtains the correct solution of the S-K model. 

When T + 0, the qi have a finite limit, while the x, are proportional to T. As an 
example we show in figure 1 the function q(x) in the approximations K = 1, 2 for 
T = 0.3. 

The values we obtain for the magnetic susceptibility do not agree with the results of 
the Monte Carlo simulations of Sherrington and Kirkpatrick (1978); however, in their 
computations they have implicitly assumed the validity of the Fisher relation x = 
P(l-qEA),  which is not valid in this approach; on the other hand, the value we obtain 
for (IEA, using equation (lo), is in good agreement with their Monte Carlo simulations. 

According to Thouless er a1 (1977), in the low-temperature region we have 

s (T) -~T ' ,   EA 21 1 - aT2 ,  p = z a  = l n 2 .  (13) 1 2  



letter to the Editor L119 

c 
08 - 

1 I I I I I 

O L  0 8  

Figure 1. The dashed line and the full line are the functions q ( x )  in the approximations 
K = 1 and K = 2, respectively. The full curve is an educated guess for the true function q ( x ) .  

In order to see if equation (13) holds in our approach, we have plotted in figures 2 

(14) 
The approximation of keeping q ( x )  piecewise constant worsens with decreasing T, 

and the division by T 2  enhances the errors in our approximation (the difference 
between qEA in the two cases K = 1 and K = 2 is always less than 0.015), so we cannot 
expect that for finite K the functions s and r have a finite limit for T+O.  In the 

and 3 the functions 

s (  T )  = S (  T ) /  T 2 ,  r ( T )  = (1 -qEA(T))/[T2(2- TI].  

Figure 2. The three curves are from below the functions s( T) in the approximations K = 0, 
1 and 2, respectively. The arrow is the zero-temperature prediction of Thouless er a1 
(1977). 
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Figure 3. The three curves are from above +e functions r (T)  in the approximations K = 0 , l  
and 2 ,  respectively. The arrow is the zero-temperature prediction of Thouless et a1 (1977). 

intermediate T region our results are in qualitative agreement with equation ( lo) ,  
although we are unable to extract the values of a and p, using such a low value of K. 

From explicit computations done near the critical temperature, we know that in the 
limit K +CO, q ( x )  becomes a smooth function (Parisi 1980a, b); it is straightforward to 
write the generalisation of equations (1 1) and (12) to an arbitrary K: in the limit K + CO 

one finds that 

FTE~I= -f(o, h),  

where the function f ( x ,  h)  satisfies the following nonlinear differential equation: 

df 1 dq a’f 
ax 2 dx ah2 
_-  - -- -[-+x(.g)2] 

with the boundary condition 

Equation 

Equation 
sequence of 

f(1, h )  = 11-112 cosh(ph)]. (17) 

(15) is correct as it stands only if q(0)  = 0, otherwise we would have 

(18) can also be derived by approximating a function with q(0)  # 0 by a 
functions with q(0) = 0, i.e. by using the continuity of the functional 

The shape of the functions q(x) in figure 1, exact results near the critical temperature 
and preliminary results for high values of K strongly suggest that q ( O ) = O ,  if the 
magnetic field h is equal to zero; (an analysis of equation (15) shows that this is possible 
only if x = 1). 

with respect to its argument, the function q ( x ) .  
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If the function q ( x )  is monotonically increasing, we can define the function x ( q ) ;  in 
this case equations (15)-(17) simplify to 

The conventional treatment of the model, i.e. no breaking of the replica symmetry, 
corresponds to x ( q )  = 0. It would be very interesting to understand if and how equation 
(19) can be derived, starting from the TAP equations of Thouless et a1 (1977). 

The method presented in this Letter enables us to compute thermodynamic 
properties of the S-K model with arbitrary precision (it would be quite interesting to do 
analytic computations near T = 0). The main unsolved problem consists in the compu- 
tation of the eigenvalues of the Hessian near our solution, in order to verify that 
non-negative eigenvalues are present. For finite K we expect the presence of negative 
eigenvalues; their absolute value should decrease with K, and become zero only for 
infinite K, leaving to us a massless mode (i.e. a zero eigenvalue), the so-called replicon 
(Bray and Moore 1978). Knowledge of the Hessian is also needed to compute the 
corrections to the saddle-point approximation: it would be the key step toward the 
application of this formalism to more realistic models of spin glasses. 
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